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My research is in algebraic combinatorics, representation theory, and the interactions

between them. There is a symbiotic relationship between these two fields, with advances in one
area often leading to discoveries in the other. This is illustrated by the interplay between the
combinatorial family of Macdonald polynomials and the representation theory of reductive groups
and double affine Hecke algebras, which we will discuss shortly. My thesis research builds upon
these connections to give a combinatorial formula for an exciting and recently discovered family
of polynomials generalizing Macdonald polynomials. In ongoing joint work, I am also studying
a different instance of the interaction between algebraic combinatorics and representation theory:
namely, the symbiosis between partition identities and the theory of vertex operator algebras. In
what follows, I will give a brief overview of these two projects, then give further details regarding
my thesis research and its future directions.

Macdonald polynomials and double affine Hecke algebras. The representation theory of
reductive groups gives rise to a wide variety of special functions, such as the appearance of Schur
polynomials as characters of the general linear group. Around 1988, Macdonald [M1]-[M3] made the
astonishing observation that many of these special functions can be generalized by a single family
of polynomials, now called (symmetric) Macdonald polynomials. These led to the construction
of, and are profitably studied using, the double affine Hecke algebra (DAHA) and its polynomial
representation, which were first introduced in the work of Cherednik, [C1]-[C3]. This representation
of the DAHA was then used to define the nonsymmetric Macdonald polynomials [O,C4,M4], which
have many of their own interesting combinatorial and representation-theoretic properties. Sahi,
Stokman, and Venkateswaran [SSV,SSV2] have recently constructed the metaplectic representation
of the DAHA, leading to the new, more general family of SSV polynomials. These discoveries are
naturally connected to objects in number theory: the metaplectic representation was motivated by
the work of [CG1,CG2] on Weyl group multiple Dirichlet series, and SSV polynomials specialize
to certain Whittaker functions related to metaplectic covers of reductive p-adic groups (this
observation is due to [SSV2] and is sketched in [Sa]). My work is motivated by the following
questions:

Problem 1. (a) How can we use the metaplectic representation of the DAHA to understand the
combinatorics of SSV polynomials?

(b) What representation-theoretic interpretations do SSV polynomials have? What insights about
representation theory can we gain from their combinatorial structure?

In [Sa], I addressed Problem 1(a), using the metaplectic representation and a result of [RY] to
prove the first combinatorial formula for SSV polynomials. My ongoing work applies this formula
to prove an analogue of the Littlewood-Richardson rule for the product of two SSV polynomials,
generalizing a result of [Y]. Below, after giving more details about the relevant background and
my contributions, I will discuss future plans for more fully solving Problem 1, including potential
connections to solvable lattice models.

Vertex operator algebras and partition identities. The Rogers-Ramanujan (RR) identities
are a famous pair of q-series identities, with the form “infinite sum = infinite product,” that can be
expressed as partition identities. Two among the many notable proofs of the RR identities are the
“motivated proof” of Andrews and Baxter [AB] (which they described as “essentially equivalent”
to the proof of [RR]) and the vertex operator theoretic proof of Lepowsky and Wilson [LW1,LW2].
These inspired Lepowsky and A. Milas to propose that the motivated proof, which “intertwines”
the two RR identities, might have an interpretation by means of suitable vertex operator algebraic
intertwining operators:

Problem 2. Construct a representation-theoretic “categorification” of the motivated proof of the
Rogers-Ramanujan identities by means of suitable twisted intertwining operators in the theory of
generalized vertex operator algebras.
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In ongoing work, A. Ginory, S. Kanade, J. Lepowsky, and I [GKLS] have solved a version of
Problem 2 for a much simpler but analogous pair of q-series identities of Euler, which were given a
“motivated proof” in [KLRS] as a special case of an infinite family of such proofs. (The Introduction
in [KLRS] includes a partial overview of an extensive program toward the solution of Problem 2.)
This has led to interesting discoveries about twisted intertwining operators for generalized vertex
operator algebras, which we believe will lead us to a solution of Problem 2 and its analogue for
generalized RR identities.

1 Macdonald Polynomials and Double Affine Hecke Algebras

1.1 Background and Motivation

Let r be a positive integer, and let P be the weight lattice corresponding to GLr, which we identify
with Zr. (We will focus on the GLr case, as it is the situation studied in [Sa] and the final section
of [SSV], but similar results can be proven for arbitrary reductive groups. This will be studied in
my thesis.) We consider the double affine Hecke algebra (DAHA) H, an associative algebra whose
generators include elements T1, . . . , Tr−1, X

ν , and Y ν for ν ∈ P . The polynomial representation is
a representation π of H on the space of Laurent polynomials, F[P ] = spanF{xµ : µ ∈ P}, where
F = C(k, q) for independent parameters k and q. (The DAHA and its polynomial representation
were first introduced by Cherednik in [C1]-[C3], and a detailed exposition is given in [C6].) The
operators π(Y ν), ν ∈ P , commute and are simultaneously diagonalizable. The nonsymmetric
Macdonald polynomials Eµ = Eµ(x; q, k), µ ∈ P , are the common eigenfunctions of the operators
π(Y ν) (normalized to have leading coefficient 1). These polynomials, which can be used to recover
the symmetric Macdonald polynomials, were introduced in successively greater levels of generality
by Opdam [O], Macdonald [M4], and Cherednik [C4]. Nonsymmetric Macdonald polynomials have
a plethora of representation-theoretic interpretations: see, for instance, [BBL,CO, I1, I2] and the
detailed inventory in [OS].

In order to study the local parts of Weyl group multiple Dirichlet series, Chinta and Gunnells
[CG1,CG2] introduced a new action of the Weyl group of the reductive group on a space of rational
functions, generalizing a result of Kazhdan and Patterson in type A [KP]. This action depends
on a positive integer n. The proof that this was indeed an action of the Weyl group relied on
a computer check. Sahi, Stokman, and Venkateswaran [SSV, SSV2] provided a conceptual proof
using the technique of “Baxterization” (see [C6]). In order to do so, they considered a DAHA H(n)

that is isomorphic to H.1 They constructed the metaplectic representation π(n) of H(n) on F(n)[P ]
(where F(n) is an extension of F with additional parameters Gi, 1 ≤ i ≤ ⌊n2 ⌋) in a natural way
involving induced representations. They then used the isomorphism between localizations of the

affine Weyl group and the affine Hecke algebra H(n)
Y ⊂ H(n) to recover the Weyl group action of

[CG1, CG2]. Similarly to the Macdonald case, the operators π(n)(Y nν) for ν ∈ P commute and
are simultaneously diagonalizable, and their simultaneous eigenfunctions are the SSV polynomials

E
(n)
µ = E

(n)
µ (x; q, k), µ ∈ P [SSV,SSV2]. The SSV polynomials also depend on the Gi parameters,

although we omit them from the notation. For µ = nλ, λ ∈ P , the SSV polynomial E
(n)
µ (x; q, k) is

the nonsymmetric Macdonald polynomial Eλ(x
n; qn, k). In particular, for n = 1, we have E

(1)
µ = Eµ.

Further, when the Gi parameters are specialized to certain Gauss sums and q → 0 or q → ∞, SSV
polynomials recover Iwahori Whittaker functions for metaplectic n-fold covers of reductive p-adic
groups, generalizing a result of [BBL] in the Macdonald case.2

1Outside of type A, the analogue of H(n) could be isomorphic to H or the DAHA for the dual root system. In
the type A setting, H(n) can be thought of as a rescaling of H, in which Xν 7→ Xnν and Y ν 7→ Y nν for ν ∈ P . One
can work with H instead, but then the representation and polynomials we discuss below will involve elements of 1

n
P

rather than P . This is the approach taken in [SSV2], where it is generalized even further.
2This observation, due to Sahi, Stokman, and Venkateswaran, is sketched and stated in [Sa] and proved more
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The crucial property of nonsymmetric Macdonald polynomials is that they satisfy a recursion
coming from the intertwiners, certain special elements in a localization of a subalgebra of H. The
importance of the intertwiners as creation operators for Macdonald polynomials was first pointed
out in the papers of Knop and Sahi [Kn, S] for GLr, building on earlier work [KS] on the Jack
limit. These ideas were extended by Cherednik [C5] for arbitrary reduced root systems and Sahi
[S2] for type BC. In particular, every Macdonald polynomial may be obtained by applying suitable
products of intertwiners to the Macdonald polynomial E0 = 1. In [RY], Ram and Yip gave an
expansion formula for such products of intertwiners in terms of combinatorial objects called alcove
walks, certain sequences of alcoves that correspond to words in the generators of the affine Weyl
group. By applying these intertwiners to 1 and using their intertwiner product formula, Ram and
Yip obtained an alcove walk formula for Macdonald polynomials.

1.2 Results

In [Sa], I generalized the alcove walk formula of [RY] to the case of SSV polynomials. Let

A(n) = {(λ1, . . . , λr) ∈ P : λ1 ≥ λ2 ≥ · · · ≥ λr, λ1 − λr ≤ n},
an analogue of the closed fundamental alcove. Then we have

Theorem 1.1. [Sa] µ ∈ Zr uniquely determines λ ∈ A(n) and an affine Weyl group element w
such that

E(n)
µ =

∑
p∈B(w⃗)

a(n)(p)xnwt(p)+ϕ(p)λ.

The coefficients a(n)(p) ∈ F(n) are given explicitly; B(w⃗) is a set of alcove walks determined by a
reduced expression for w; and wt(p) ∈ P and ϕ(p) ∈ W0 (where W0 is the finite Weyl group) are
determined by the last alcove in the alcove walk p.

This result is proved similarly to the alcove walk formula of Ram and Yip [RY]. These techniques can
be adapted because the SSV polynomials can be constructed using the action of the intertwiners
via the metaplectic representation. However, a key difference from the Macdonald case is that,
rather than applying the intertwiners to E0 = 1, one needs to apply them to all xλ, λ ∈ A(n),
creating some additional subtleties.

As consequences of this result, I obtained alcove walk formulas for symmetrized SSV polynomials
(generalizing symmetric Macdonald polynomials) and for certain specializations that relate to
metaplectic Iwahori Whittaker functions. Further, a detailed analysis of the terms in Theorem 1.1
gave the following triangularity result, explicitly characterizing the support of the SSV polynomials:

Theorem 1.2. [Sa] For µ ∈ P ,

E(n)
µ = xµ +

∑
ν
n
<µ

cνx
ν

for some nonzero scalars cν ∈ F(n), where
n
< is a partial ordering on P related to the Bruhat order.

I then used this result and some calculations involving the partial order
n
< to prove the following

corollary, where the support of a Laurent polynomial f is the set of all µ ∈ P such that xµ appears
in the monomial expansion of f :

Corollary 1.3. [Sa] Let µ ∈ P , and suppose m and n are positive integers with m|n. Then the

support of E
(n)
µ is a subset of the support of E

(m)
µ .

This allows us to understand how the support of E
(n)
µ changes as n varies. In particular, we

see that for n > 1, the SSV polynomial E
(n)
µ has “fewer terms” than the corresponding Macdonald

polynomial E
(1)
µ .

generally in [SSV2].
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1.3 Future Work

There are several very interesting directions in which to take this project.

1. In my thesis, I plan to generalize the above results to the setting of SSV polynomials associated
with a general reductive group (as opposed to the type A case considered above).

2. One of the first applications of the alcove walk formula of [RY] was Yip’s result giving
a Littlewood-Richardson rule for Macdonald polynomials [Y]. In work in progress, I am
extending this to the case of SSV polynomials. This relates to Problem 1(b): for instance,
since SSV polynomials specialize to certain Whittaker functions, we obtain a Littlewood-
Richardson rule for those Whittaker functions.

3. The alcove walk formula of Theorem 1.1 gives an answer to Problem 1(a), but it is only one
of many possible answers. There are two avenues that I find particularly interesting:

(a) SSV polynomials generalize both nonsymmetric Macdonald polynomials and metaplectic
Iwahori Whittaker functions. Both of these families have been constructed via solvable
lattice models: these models were given in [BW, ABW] for Macdonald polynomials
and [BBBG] for metaplectic Iwahori Whittaker functions. I am interested in finding
a common generalization of these models to the setting of SSV polynomials. I believe
that this will require a more in-depth understanding of the representation theory of
the quantum groups associated to affine Lie superalgebras. These lattice models are
constructed using certain solutions to the Yang-Baxter equation, which typically arise
from R-matrices of quantum groups. However, the solution to the Yang-Baxter equation
studied in [BBBG] currently has no known quantum group interpretation and is in
fact proved via a computer check. I would like to understand the results of [BBBG]
through the lens of quantum groups, then apply this understanding to generalize the
corresponding lattice model to the case of SSV polynomials.

(b) Another well-known combinatorial formula for Macdonald polynomials is the non-
attacking filling formula of [HHL]. This formula was connected to Ram and Yip’s alcove
walk formula in [Le, GR]. I would like to give an analogue of these arguments in the
SSV setting, hopefully arriving at a new formula generalizing that of [HHL]. A potential
avenue of attack is suggested by the recent work [LeS], which connects the alcove walk,
HHL, and Tokuyama-style formulas for type A Whittaker functions. I would like to
study the generalization of these results to the metaplectic setting, which should provide
inspiration for the more general SSV case.

4. Problem 1(b) remains open. I know of no representation-theoretic interpretations of proper
SSV polynomials (that is, those that are not also Macdonald polynomials) other than those
that arise through the connection to metaplectic Iwahori Whittaker functions. I would like
to investigate the extent to which certain results, such as the correspondence of certain
specializations of Macdonald polynomials with affine Demazure characters [San,I1] and zonal
spherical functions (see [M3]), extend to SSV polynomials.

2 Other Projects

During the summer of 2021, I studied a problem related to the Wigner function formalism in
quantum mechanics with Dr. A. F. Barghouty and F. P. Eblen at NASA Headquarters. With Dr.
E. Rieffel at the NASA Ames Research Center, I am working on a problem in quantum computation,
which we expect to lead to a publication.

As an undergraduate, I participated in an REU project with B. A. Itzá-Ortiz, M. B. Malachi,
A. Marstaller, and S. Underwood. Afterward, we published the work [IMMSU], in which we
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classified “eventually periodic” subshifts in the field of symbolic dynamics up to conjugacy and
flow equivalence.

References

[ABW] A. Aggarwal, A. Borodin, M. Wheeler, Colored Fermionic Vertex Models and
Symmetric Functions, arXiv:2101.01605v2 (2021).

[AB] G. E. Andrews and R. J. Baxter, A motivated proof of the Rogers-Ramanujan
identities, American Math. Monthly 96 (1989), 401–409.

[BBBG] B. Brubaker, V. Buciumas, D. Bump, H. P. A. Gustafsson, Metaplectic Iwahori
Whittaker functions and supersymmetric lattice models, arXiv:2012.15778v2 (2021).

[BBL] B. Brubaker, D. Bump, A. Licata, Whittaker functions and Demazure operators, J.
Number Theory 146 (2015), 41-68.

[BW] A. Borodin, M. Wheeler, Nonsymmetric Macdonald polynomials via integrable vertex
models, arXiv:1904.06804v1 (2019).

[C1] I. Cherednik, Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and
Macdonald’s operators, Internat. Math. Res. Notices (1992), no. 9, 171-180.

[C2] I. Cherednik, The Macdonald constant term conjecture, Internat. Math. Res. Notices
(1993), no. 6, 165-177.

[C3] I. Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of
Math. (2) 141 (1995), no. 1, 191-216.

[C4] I. Cherednik, Nonsymmetric Macdonald polynomials, Internat. Math. Res. Notices
(1995), no. 10, 483-515.

[C5] I. Cherednik, Intertwining operators of double affine Hecke algebras, Selecta Math.
(N.S.) 3 (1997), no. 4, 459–495.

[C6] I. Cherednik, Double Affine Hecke Algebras, London Math. Soc. Lecture Note Series
319, Cambridge Univ. Press, Cambridge, 2005.

[CO] I. Cherednik, D. Orr, Nonsymmetric difference Whittaker functions, Math. Z. 279
(2015), no. 3-4, 879-938.

[CG1] G. Chinta, P.E. Gunnells, Weyl group multiple Dirichlet series constructed from
quadratic characters, Invent. Math. 167 (2007), no. 2, 327-353.

[CG2] G. Chinta, P.E. Gunnells, Constructing Weyl group multiple Dirichlet series, J. Amer.
Math. Soc. 23 (2010), 189-215.

[GKLS] A. Ginory, S. Kanade, J. Lepowsky, J. Saied, Initiation of a program to categorify
“motivated proofs” of generalized Rogers-Ramanujan identities, in preparation.

[GR] W. Guo, A. Ram, Comparing formulas for type GLn Macdonald polynomials,
arXiv:2104.02942 (2021).

[HHL] J. Haglund, M. Haiman, N. Loehr, A combinatorial formula for nonsymmetric
Macdonald polynomials, Amer. J. Math. 130 (2008), no. 2, 359-383.

[I1] B. Ion, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math.
J. 116 (2003), no. 2, 299-318.

5



[I2] B. Ion, Standard bases for affine parabolic modules and nonsymmetric Macdonald
polynomials, J. Algebra 319 (2008), no. 8, 3480-3517.
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